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Who Is This Guy?
Gwangmu Lee

Switched the field a few times.
- BS: Physics @ POSTECH

- MS: Compiler & Compiler Architecture @ POSTECH

- PhD: Computer Security @ SNU

Now settled in Computer Security.

- Currently a post-doc researcher @ EPFL (Switzerland)

(“HexHive” led by Prof. Mathias Payer)

Some relevant addresses:
- https://hexhive.epfl.ch (lab website)

- iss300@gmail.com (my email)
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What is a 
vulnerability?

Me back then:

https://hexhive.epfl.ch
mailto:iss300@gmail.com


About The Vulnerability
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What Is A Vulnerability per Wikipedia
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Vulnerabilities

Flaws in a system, which can be 
exploited by an attacker to 

perform unauthorized actions.

Software Bugs

Errors, flaws or faults in 
software that causes incorrect 

or unexpected behaviors.

exploited
⊂



Vulnerabilities in Action
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 http://goggle.com

Password

Credential (e.g., keys)

Search history

Other personal info

Cookie storage

Browser

Let’s take an example from a web browser.

Browsers hoard tasty information in its cookie storage.

- Useful if used well, but critical if exposed.

- Browsers control access to cookies to prevent that.

 Interface.
- But if a bug doesn’t meet some requirements,

that attempt ought to be thwarted in the end.

Now suppose your browser has a bug.

- Some obscure site may try to take advantage of it.



Cookie storage

Imagine this bug manages to open a way to cookies.
- Then this site can exploit this bug to steal data.

- Now this bug is called vulnerability.

Vulnerabilities in Action
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Password

Credential (e.g., keys)

Search history

Other personal info

Browser

Let’s take an example from a web browser.

Browsers hoard tasty information in its cookie storage.

- Useful if used well, but critical if exposed.

- Browsers control access to cookies to prevent that.

 Interface.

- Now this bug is called vulnerability.

- But if a bug doesn’t meet some requirements,

that attempt ought to be thwarted in the end.

Now suppose your browser has a bug.

- Some obscure site may try to take advantage of it.



Examples of Vulnerabilities  Memory Bugs

Software itself is controlled by memory.
Obviously, memory bugs are destined to be critical.

- Collectively called memory bugs if it involves 

illegal read/write to memory.
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1: p=malloc();

Memory

2: *p= xdead; ;

3: free(p);

4: print(*p);

Code

p

0xdeadp

0xdeadp

0xdeadp

  Use after free
Some examples of illegal memory access are;

- Use after free (UAF):    accessing freed memory.

Repercussion 💀
- Stealing in-memory data (e.g., security keys).

- Hijacking the control to making it a puppet.

- …

MemoryCode

  Buffer overflow

p

1: p=malloc(2);

2: print(p[2]);

&p[2]

- Buffer overflow (BO):  accessing out of bound.



Examples of Vulnerabilities  Semantic Bugs
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Perfectly legal memory access can also wreak havoc,
if it violates high-level specifications. (i.e. semantics)

- Example: wrong return values from library APIs.

- “add(x,y) returned x * y”

- What if the caller acts up weirdly because of it?
Specification

File System
Implementation

add(2, 4)

Input

8

Output

User
App.

“??$@#!^&!%”

Repercussion 💀
- Data loss (i.e., attacker-controlled data corruption).

- Denial of service, and so on.

API:  add(x,y)

Returns the addition 
of the arguments.



How to Mitigate Them?
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These are some representative software-based approaches.

Compartmentalize

Confine the impact of one 
vulnerability to a subset of 

the entire program.

Early Detection

Detect and eradicate 
vulnerabilities as early as 

possible, before attackers.

Let’s talk 
about this.

Runtime Defense

Detect weird behaviors at 
runtime and stop them to go 
further. (e.g., by terminating it)



Security
Researcher

Vulnerability Detection: Are We Winning?
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Let’s see whether vulnerability detection is paying off.

When CVE was introduced. (1999) .
- Short for “Common Vulnerabilities and Exposures.”

- Roughly, recognized vulnerabilities in the wild.
- Mostly discovered and reported by researchers first.

Increasing Trend (mid-2010~) .

- In 2017, even tripled in a year.
- What happened here?

(until Dec 31st)



The History of Vulnerability Detection
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Let’s Go Back in Time. In Early Years…
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Suppose you want to find vulnerabilities in code.

- A vulnerability is effectively a set of rules.
(e.g., use after free; find uses after frees)

Two major analytical approaches
1) Symbolic execution
2) Static analysis (e.g., abstract interpretation)

Maybe? Can we just look into code and analyze it?

- “Analytical approach”, that’s the most orthodoxical 

approach if it seems to be clear what to find.

- Similar to how CV started off with this approach.
(like, “scale-invariant feature transformation”)



Symbolic Execution  Proposal
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Rough mechanism sketch

- Program state ⇒ a function of symbols.

- Branch (e.g., “if”) ⇒ a constraint on those functions.
- If a constraint is satisfiable,

the following program state is also possible.

- See if some possible states are illegal.
(e.g., an offset larger than the buffer size)

In the mid-70’s, a series of papers proposed 
symbolically executing programs. (as in, no concrete input values)

- Input bytes as symbols, like mathematical variables.

- Describe a program state as a function of those symbols.

- Find if illegal program states are possible.



fail()
:5

Symbolic Execution  Example
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int main() {
  int y = read();
  int z = y * 2;
  if (z == 12) {
    fail();
  } else {
    printf("OK");
  }
}

Program

Program State Graph

Code stolen from Wikipedia (“Symbolic Execution”)

1

2

3

4

5

6

7

8

9

Program
State

Constraints

y = sym_0
:2

y = sym_0
z = sym_0 * 2

:3

y = sym_0
z = sym_0 * 2

sym_0 * 2 = 12

:4
y = sym_0
z = sym_0 * 2

sym_0 * 2 ≠ 12

:6



Symbolic Execution  Ups and Downs
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int main() {
  int y = read();
  int z = y * 2;
  if (z == 12) {
    fail();
  } else {
    printf("OK");
  }
}

Perfect and ideal, if done faithfully.

- Theoretically, you can completely investigate (almost) 

every single program state before actually running it.

- Works well with small simple programs.

The caveat here is “faithfully”, because we may not.

1) Increasing program states against branches, 

exponentially. (i.e., one branch doubles up the # of states)

f(x)
library_call();

2) Non-analyzable code. (e.g., library calls)



Symbolic Execution  Development
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Learn from the real behavior of non-analyzable code.
1) Request the actual outcome to the code. (e.g., S2E)

2) Use the model of the code. (e.g., KLEE)

Analyze less branches to avoid exploding states.
1) Don’t analyze the entire program; do it on a function.

(“Under-constrained symbolic execution”)

2) Just use it for a part of a program. (e.g., part of the OS kernel)

3) Solve the branches along the concrete execution path.
(“Concolic execution”; that’s the actual term!)

library_call();......

Actual Program
or Model

Improvement mostly made in the early 2010’s.



Static Analysis  Proposal
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Wait. There’s another analytical approach,
called Abstract Interpretation, also from 70’s.

- Similar to Symbolic Execution, but a little relaxed.

- “Examine every *possible* states.”

- If things get too complex or uncertain (e.g., library calls),

it just glosses over or assumes conservatively.

Rough mechanism sketch

- Track execution paths. (just like Symbolic Execution)

- Approximate or assume states/constraints if needed.

- Try matching vulnerability patterns to execution paths.
(e.g., use after free; first free, then use the memory)



Use after free
:7

y = sym_0
z = [mem_0]*

sym_0 % 12 = 0
lib_call() = 1

:6

*: freed

“Assume”

Static Analysis  Example
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int main() {
  int y = read();
  int *z = malloc();
  if (y % 12) {
    free(z);
    if (lib_call())
      print(*z);
  }
}

Program

Program State Graph

1
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Program
State

Constraints

y = sym_0
z = [mem_0]

:3

y = sym_0
z = [mem_0]

sym_0 % 12 = 0

:4
y = sym_0
z = [mem_0]

sym_0 % 12 ≠ 0

:8

“Abstract Interpretation”, to be specific in this example.



Static Analysis  Ups and Downs

Very effective for shallow, straightforward vulnerabilities.

- “Shallow”: close to the entry point (e.g., main()),

- “Straightforward”: the info. that should be tracked is clear.
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int main() {
  int y = read();
  int *z = malloc();
  if (y % 12) {
    free(z);
    if (lib_call())
      print(*z);
  }
} int foo(int *z) {

  if (complex_cond)
    bar(z);
}

int bar(int *z) {
  if (another_lib())
    print(*z);
}

foo(z);.... Problem 1: many false positives.

- Assumptions may be wrong, let alone when it’s accumulated.

- Easily happen for non-shallow code.

w=z; free(w);

Problem 2: many false negatives.

- It should keep relevant information from approximated out.
(e.g., memory allocation/free states in use after free)

- But how would you know which information is relevant?
(e.g., pointer transfer in use after free)

“Assume”

“Approx.”

“Assume”



Static Analysis  Development
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Make it less relaxed.
1) Incorporate constraint solvers (e.g., Z3) from Symbolic Analysis.

2) Use a model for non-analyzable code (e.g., Clang Static Analyzer).

Also improved mostly in the early 2010’s and onwards.

Why not combine it to Symbolic Analysis?

- Rough investigation with Static Analysis,

and through verification with Symbolic Execution.

int main() {
  int y = read();
  int *z = malloc();
  if (y % 12) {
    free(z);
    if (lib_call())
      print(*z);
  }
} int foo(int *z) {

  if (complex_cond)
    bar(z);
}

int bar(int *z) {
  if (another_lib())
    print(*z);
}

foo(z);....

w=z; free(w); “Assume”

“Approx.”

“Assume”

Add/create/revise patterns until it’s fair enough.
1) Make pattern creation as easy as possible. (e.g., CodeQL, Joern)

2) Include many patterns and sell it. (e.g., SonarQube, Coverity)

w=z; free(w);

foo(z);....

Solver and Model



Meanwhile, Not Every Approach Was Analytical

In 1990, an empirical approach revealed many bugs 
in UNIX utilities. (e.g., tee and nm)

- Literally empirical; “put random bytes to programs.”

- Found many undiscovered bugs by then.

- Deemed as a precursor of modern-day fuzzing.

Results were promising, but it had obvious drawbacks.

- Random inputs cannot explore, or even reach
a deeper part of a program.

- Pushed back to a backseat ever since,

used by researchers and hackers behind the scenes.
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But Then, There Was A Breakthrough
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The result was remarkable; tons of new vulnerabilities
across all sort of programs.

- Check out the official site (https://lcamtuf.coredump.cx/afl)

for the list of bugs found by AFL. (it’s quite a lot!)

In 2013, the arrival of AFL revolutionized fuzzing. 

- Random nature didn’t change, but it did it smart.

- Mutation: slightly modify valid inputs to create new ones.

- Feedback: make the target program report

whether the last input was “interesting”.

          * Caveat: most probably they didn’t do them the first time.

https://lcamtuf.coredump.cx/afl


Fuzzer (e.g., AFL)

Target Program (CFG)

Fuzzing  How It Works
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Corpus

✓✓✓

Seeds
(valid)

main()

✓
“Mutate”

Basic Terminology (roughly)

- Seed:  “interesting” inputs.

- Corpus:  seed database.

Two key weapons in the arsenal.

1) Mutation
- Take one seed from the corpus.

- Change some part of it randomly. (e.g., bit flip)



Fuzzer (e.g., AFL)

Target Program (CFG)

Fuzzing  How It Works

24

Corpus

✓✓✓

Seeds
(valid)

main()

✓
“Mutate”

Basic Terminology (roughly)

- Seed:  “interesting” inputs.

- Corpus:  seed database.

Two key weapons in the arsenal.

1) Mutation
- Take one seed from the corpus.

- Change some part of it randomly. (e.g., bit flip)

Seeds
(created)

Covered Edges

2) Feedback
- Check if the mutated input exhibited

any interesting behavior. (e.g., triggering new edge)

- If it is, add the mutated input to the corpus.



Explored Space

Fuzzing  Ups and Downs

Cons 1: cannot say “there’s no bugs anymore”
 (or academically put, “no guarantee on completeness”)

- There might be vulnerabilities that we couldn’t find,

but they (e.g., attackers) may find.
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  State Space .

Initial Seed

Cons 2: highly dependent on the initial seeds.

- From the perspective of the state space,

mutation can’t go too far from the initial seeds.

- Why? Because mutation only breaks inputs.

- Bad initial seeds ⇒ bad fuzzing.

But in practice, it was a huge success.

- If the vulnerability is too obscure,

anybody wouldn’t easily find it either (incl. attackers).



Let’s Take A Look at A Timeline… Again
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Symbolic Analysis
introduced

Abstract Interpretation
(Static Analysis) introduced

Fuzzing
introduced

CVE
launched

AFL
hit the scene

Google N-gram Search 
(American English, ~2019)

Fuzzing

Symbolic Execution

How’s it
going now?



Development in Fuzzing
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After The Initial Breakthrough
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Research on a fundamental level; “can we improve fuzzing itself?”

Mutation

Randomly flipping bits and 
bytes can overly break the 

sanity of seeds.

Feedback

Simply checking if CFG edges 
are covered (i.e., edge coverage) 
glosses over exec. too much.

Covered Edges



Topic: Searching for Better Feedback 
Only checking CFG edges (e.g., “edge coverage”)

may miss too much execution details.

- The same edge can be entered differently.
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Covered Edges

Some alternative proposals.

- Counting how many times a given edge is taken.

- Distinguish the context when it enters an edge.
(e.g., previous N edges, call stack, …)

- Enhance with data-flow hints.

Issues and Status-quo
- Not super effective for an added complexity.

- Some side-effects. (e.g., too many “interesting” seeds)

- Currently, just plain edge coverage is dominant.



Topic: Improving Mutation and Seed Selection
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Basic mutation and seed selection (=”what to mutate?”)

- Randomly changing bits and bytes.

- Also randomly choosing seeds.

Fuzzer

Corpus

✓✓✓

✓

Input
Bytes

…
…

Mutation
Hints

(prob., type, …)

✓✓✓

Selection
Prob.

Seeds

Making mutation smarter.

- Mutate the bytes affecting blocked branches.

- Mutate the bytes yielding better feedback.

- Identify the type of bytes and mutate accordingly.

Making seed selection smarter.

- Use gradient-descent or DL to prioritize seeds

closer to the solutions of blocked branches.

- Use statistics to select generally high-yielding seeds.



Entering Mature Stage
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Going beyond the conventional fuzzing.

Extending Applicability

Can we fuzz other than the 
standard byte-input, 

open-source programs?

Specializing Purposes

Do we have to stick to 
discovering vulnerabilities in 
every part of the program?

Hybrid Approaches

Do we have to rely on 
pure randomness in every 

stage of fuzzing?

* Not a definitive list.



Fuzzer

Target Program

Corpus

✓✓✓

Byte-formatted

… …

States

Call Sequence

f=open(); read(f); …

Grammatical

func foo() { var …

Topic: Extending Applicability

Conventional fuzzing works well with programs that;

- Accept byte-formatted inputs.

- Have no inter-execution states.

- Are open-sourced.
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But there are *many* programs that;
- Accept call sequences as inputs. (e.g., OS kernels, libraries)

They all have their own line of research.

- Have a strict grammar. (e.g., JS interpreters, hypervisors, …)

- Have inter-execution states. (e.g., network, bluetooth, …)

- Are closed-sourced. (e.g., firmware, …)



Program
Program

Program

Different
Versions
or Impl.

Corpus

✓✓

Target Program

Topic: Specializing Purposes

Conventional fuzzing aims at;

- Testing the entire program.

- Detecting easy-to-detect vulnerabilities.
(e.g., memory errors)
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Fuzzer✓

Specializing purposes can improve efficiency.

- Targeting a specific code location
(“Directed fuzzing”)

- Targeting patched code locations.
(“Regression fuzzing”)

- Detecting the semantic difference
between different versions or implementations.
(“Differential fuzzing”)



Topic: Hybrid Approaches

Fuzzing is fundamentally empirical (i.e., trial-and-error),
so it can easily stuck at difficult branches.
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if (*x == 0x12345678)

if (x[0] == 0x12)
 if (x[1] == 0x34)
  if (x[2] == 0x56)
   if (x[3] == 0x78)

Why not combining it to analytical approaches?

- Resort to Symbolic Execution
when a difficult branch needs to be solved.

- Resort to Static Analysis
to make such a branch easy-to-solve by fuzzing.

- Example: “if (*x == 0x12345678)”.

- Which one would be faster?
● Guessing random numbers between

0x00000000 to 0xffffffff.

● Solving the equation.



Some Future TODOs for Fuzzing
1) Detecting Semantic Vulnerabilities

- Fuzzing relies on detection mechanism. 

- Detecting semantic vulnerabilities is never easy. (remember the specification example?)

- Some research has been done (e.g., file system), but never been generally solved yet.

2) Providing Completeness Guarantee
- Fuzzing is an empirical process.

- Implication; it cannot guarantee that there’s no remaining vulnerability.

- Very critical shortcoming for mission-critical software.
(e.g., firmware on medical devices and aerospace vehicles)

- Can we give some completeness guarantee in one way or another?
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Conclusion
Software vulnerabilities can do harm to software/systems/users.

- Detecting vulnerabilities is one way to counter that threat.

Analytic approaches were dominant at the early stage,
- but fuzzing eventually took over the mainstream.

Research first attempted to improve fuzzing on a fundamental level.
- Later research was diversified to such as about applicability and specialization.

There are still some future tasks to solve.

Check out recent fuzzing papers at https://github.com/wcventure/FuzzingPaper.
(caveat: *not* my repo, but it’s pretty extensive)
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https://github.com/wcventure/FuzzingPaper


Thanks for Listening
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Special thanks to Chibin Zhang (chibin.zhang@epfl.ch)

Speaker: Gwangmu Lee (HexHive @ EPFL)

Slides available at https://gwangmu.github.io.

mailto:chibin.zhang@epfl.ch
https://gwangmu.github.io
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